首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   12篇
  国内免费   1篇
测绘学   17篇
大气科学   19篇
地球物理   37篇
地质学   75篇
海洋学   9篇
天文学   50篇
自然地理   9篇
  2023年   2篇
  2021年   4篇
  2020年   3篇
  2019年   9篇
  2018年   9篇
  2017年   7篇
  2016年   10篇
  2015年   3篇
  2014年   7篇
  2013年   10篇
  2012年   9篇
  2011年   15篇
  2010年   8篇
  2009年   8篇
  2008年   13篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   10篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
  1960年   1篇
  1956年   1篇
排序方式: 共有216条查询结果,搜索用时 86 毫秒
91.
The center of the 35.3 Ma Chesapeake Bay impact structure (85 km diameter) was drilled during 2005/2006 in an ICDP–USGS drilling project. The Eyreville drill cores include polymict impact breccias and associated rocks (1397–1551 m depth). Tens of melt particles from these impactites were studied by optical and electron microscopy, electron microprobe, and microRaman spectroscopy, and classified into six groups: m1—clear or brownish melt, m2—brownish melt altered to phyllosilicates, m3—colorless silica melt, m4—melt with pyroxene and plagioclase crystallites, m5—dark brown melt, and m6—melt with globular texture. These melt types have partly overlapping major element abundances, and large compositional variations due to the presence of schlieren, poorly mixed melt phases, partly digested clasts, and variable crystallization and alteration. The different melt types also vary in their abundance with depth in the drill core. Based on the chemical data, mixing calculations were performed to determine possible precursors of these melt particles. The calculations suggest that most melt types formed mainly from the thick sedimentary section of the target sequence (mainly the Potomac Formation), but an additional crystalline basement (schist/gneiss) precursor is likely for the most abundant melt types m2 and m5. Sedimentary rocks with compositions similar to those of the melt particles are present among the Eyreville core samples. Therefore, sedimentary target rocks were the main precursor of the Eyreville melt particles. However, the composition of the melt particles is not only the result of the precursor composition but also the result of changes during melting and solidification, as well as postimpact alteration, which must also be considered. The variability of the melt particle compositions reflects the variety of target rocks and indicates that there was no uniform melt source. Original heterogeneities, resulting from melting of different target rocks, may be preserved in impactites of some large impact structures that formed in volatile‐rich targets, because no large melt body exists, in which homogenization would have taken place.  相似文献   
92.
We synthesize reaction rims between thermodynamically incompatible phases in the system MgO-Al2O3-SiO2 applying uniaxial load using a creep apparatus. Synthesis experiments are done in the MgO-SiO2 and in the MgO-Al2O3 subsystems at temperatures ranging from 1150 to 1350 °C imposing vertical stresses of 1.2 to 29 MPa at ambient pressure and under a constant flow of dry argon. Single crystals of synthetic and natural quartz and forsterite, synthetic periclase and synthetic corundum polycrystals are used as starting materials. We produce enstatite rims at forsterite-quartz contacts, enstatite-forsterite double rims at periclase-quartz contacts and spinel rims at periclase-corundum contacts. We find that rim growth under the “dry” conditions of our experiments is sluggish compared to what has been found previously in nominally “dry” piston cylinder experiments. We further observe that the nature of starting material, synthetic or natural, has a major influence on rim growth rates, where natural samples are more reactive than synthetic ones. At a given temperature the effect of stress variation is larger than what is anticipated from the modification of the thermodynamic driving force for reaction due to the storage of elastic strain energy in the reactant phases. We speculate that this may be due to modification of the physical properties of the polycrystals that constitute the reaction rims or by deformation under the imposed load. In our experiments rim growth is very sluggish at forsterite-quartz interfaces. Rim growth is more rapid at periclase-quartz contacts. The spinel rims that are produced at periclase-corundum interfaces show parabolic growth indicating that reaction rim growth is essentially diffusion controlled. From the analysis of time series done in the MgO-Al2O3 subsystem we derive effective diffusivities for the Al2O3 and the MgO components in a spinel polycrystal as ${\rm D}_{MgO} = 1.4 \pm 0.2 \cdot 10^{-15}$  m2/s and ${\rm D}_{Al_2O_3} = 3.7 \pm 0.6 \cdot 10^{-16}$  m2/s for T?=?1350 °C and a vertical stress of 2.9 MPa.  相似文献   
93.
94.
95.
96.
We examine the uncertainties in two plasma parameters from their true values in a simulated asymmetric corona. We use the Corona Heliosphere (CORHEL) and Magnetohydrodynamics Around the Sphere (MAS) models in the Community Coordinated Modeling Center (CCMC) to investigate the differences between an assumed symmetric corona and a more realistic, asymmetric one. We were able to predict the electron temperatures and electron bulk flow speeds to within ±?0.5 MK and ±?100 km?s?1, respectively, over coronal heights up to 5.0 R from Sun center. We believe that this technique could be incorporated in next-generation white-light coronagraphs to determine these electron plasma parameters in the low solar corona. We have conducted experiments in the past during total solar eclipses to measure the thermal electron temperature and the electron bulk flow speed in the radial direction in the low solar corona. These measurements were made at different altitudes and latitudes in the low solar corona by measuring the shape of the K-coronal spectra between 350 nm and 450 nm and two brightness ratios through filters centered at 385.0 nm/410.0 nm and 398.7 nm/423.3 nm with a bandwidth of ≈?4 nm. Based on symmetric coronal models used for these measurements, the two measured plasma parameters were expected to represent those values at the points where the lines of sight intersected the plane of the solar limb.  相似文献   
97.
We have developed a new technique to decouple the spectra of the host and the nucleus of type I AGNs using integral field spectroscopy data. The technique is a simple extension of methods widely tested in 2D imaging. We present here the results from applying the technique to data taken with INTEGRAL at the 4.2 m William Herschel Telescope on the Seyfert 1 radio-galaxy 3C 120. We obtained, for the first time, a clean spectrum of the host galaxy, without contamination from the nuclear source.  相似文献   
98.
We present a first analysis of 2.4-45μm spectra of NGC 1068 obtained with the Short Wavelength Spectrometer SWS on board the Infrared Space Observatory ISO. The measured fine-structure line fluxes can be fit successfully by a simple photoionization model invoking an EUV bump in the ionizing continuum, similar to the case of the Circinus galaxy. Difference are observed between the [OIV] 26μm NLR line profile and optical NLR line profiles which may indicate significant extinction to part of the NLR. We detect pure rotational transitions of molecular hydrogen that must be emitted by molecular gas spanning a wide range of temperatures. The unusual strength of the fundamental S(0) 28μm rotational transition is evidence for a large (> 1.5 × 109 M⊙) gas mass at temperatures nea r 100 K. Either most of the gas in the circumnuclear region of NGC 1068 is warm or previous molecular mass estimates based on CO observations were too low. Strong mid-infrared continuum from the circumnuclear warm dust is prominent in our spectrum. The weak PAH emission detected at the edges of the 9.7μm silicate absorption should be considered in interpretations of the silicate feature. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
99.
Abstract— We performed a detailed study of silica‐rich components (SRC) in the paired CH chondrites Acfer 182 and 207. These SRCs appear either as chondrules or fragments, and they contribute <0.1 vol% to the bulk meteorite. They usually contain a silica and a silicate portion. Both portions are, in most cases, cryptocrystalline and have bulk SiO2‐concentrations between 65 and 85 wt%. The silicate generally has a pyroxene normative composition. The silica often appears as blebs within the silicate matrix or vice versa. If there are no blebs, silica and silicate still form rounded interfaces. The SRCs are depleted in refractory elements like Ca, Al, and Ti relative to CI. A few SRC‐like objects are extremely rich in Mn and show no depletion in refractory elements. We conducted micro‐Raman studies on the silica portions of the SRCs to determine their structure, and we identified several silica phases: α‐quartz, cristobalite, glass, and a yet unidentified polymorph. The silicate portion is glass when the silica is glass and crystalline when the silica is crystalline. The low contents of Al and Ca make an igneous origin of the SRCs very unlikely, and the absence of metal excludes the formation by reduction of pyroxene. We suggest, instead, a fractional condensation origin of the SRCs from a Si‐enriched gas after removal of gaseous Mg by forsterite condensation. Additional evidence for fractional condensation is provided by a unique layered object with olivine in the core, pyroxene and metal at the rim, and silica at the outermost border; these layers record the condensation sequence. Two chondrules were found with several percent of Mn and high Cr, Na, and K contents, providing further evidence for condensation from a fractionated gas. The texture of the SRCs and the occurrence of cristobalite and silica glass, however, require formation by liquid immiscibility at high temperatures, above 1968 K, and subsequent fast cooling. Therefore, we propose a 2‐stage model for the formation of SRCs in CH chondrites: 1) fractional condensation of forsterite, enstatite, and SiO2‐rich phases; and 2) reheating of SiO2‐rich components to temperatures above 1968 K followed by rapid cooling. All other phases identified in CH chondrites can be understood within the framework of this model. Thus, the extremely unequilibrated CH chondrites provide a wealth of evidence for fractional condensation processes in the early solar nebula, in metals (Meibom et al. 1999), and in silicates.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号